
".J . • ' • 

1
• l I~ I li- . ,., .. , ... ,w~··~ -

1 ~ . 



•COMMENTARY• 

USELESS BENCHMARKS: 
.Just Say No! 

72 

EVERYONE WHO IS INTERESTED IN DBMS PERFORMANCE 

SHOULD BE AWARE OF WHAT TPC BENCHMARK 

NUMBERS REALLY (DO NOT) MEAN. 

BY DAVID McGOVERAN 

H
aving spent a significant 
portion of the last ten years 
consulting on relational 
DBMS performance mod­
eling and tuning, tlllal.ldited 
benchmarks, postmortem 

audits, and complex relational application 
design and development, I assumed that 
the TPC benchmarks were a reasonable 
effort to provide users with useful price/ 
perlonnance information. After I completed 
my first audited TPC benchmark in 

September 1991, I became convinced 
that I was wrong. That benchmark was 

intended to meet the Transaction Pro­
cessing Perlonnance Council (IPC) 
Benchmark B specifications. 

I thought at first that I should 
share what I learned with my 
clients. The actual experience was 
so illuminating that I immediately 
wrote the first version of this arti­

cle instead. Interestingly, the paper 
was rejected at that time by every m& 

jor industry publication as being "too 
one-sided." I disagree. Everyone who is 

interested in DBMS performance should 
be aware of what TPC benchmark num­
bers really (do not) mean. 

FU"St, the reader needs to understand 
a bit about the TPC Benchmark B speci­
fication, and the TPCJts history, and cur­
rent status. The TPC benchmarks are 
based on certain early benchmark efforts, 
notably ETl, TPl, and DebitCredit Tom 
Sawyer (then of Codd & Date Consult­
ing, and now Performance Metrics) and 
Omri Serlin of ITOM International first at­
tempted to standardize DebitCredit with 
a standards document The 1PC was sul>­
sequently founded by Omri Serlin in 1988. 
The council consists primarily of system 
and database vendors. (Virtually all the 
major U.S. vendors are represented.) The 
1PC issued the first standard, 1PC Bench­
mark A. in late 1989. TPC Benchmark B . 
was published in mid-1990. TPC Bench­
mark C was issued in 1992, and TPC 

David McGoveran has. been President of 
Alternative Technologies, a Boulder ·creek, 
California database consulting firm, since 
1976. He is author (with Chris Date) of A 
Guide to Sybase and SQL Server, and pub­
lisher of in,Jepth technical studies of major 
DBMSs, The Database Product Evaluation 
Report Series. 

NOVEMBER 1993 DBMS 



Benchmarks D, E, and Client/Server (C/S) 
are expected to be released in 1994. The 
critical comments in this paper apply to 
Benchmarks A. B, C, and most probably 
will apply to D, E, and C/S as well. 

Both the TPC-A and the TPC-B bench­
marks use the same simple database 
(see Listing 1) and simple transaction 
profile. TPC-A includes terminal emula­
tion, whereas TPC-B permits the use of 
batch transaction generation. Typically, 
benchmark tests are run with the system 
in isolation; only four tables will exist in 
the database, only one type of transac­
tion (consisting of three record updates, 
one record insert, and one record re­
trieval - as shown in Listing 2) will be 
submitted during the test, and no extra­
neous processes will run on the system 
during the test. 

A benchmark is run by a benchmark 
team and has a sponsor. (These are typi­
cally part of the same company, usually 
the DBMS vendor.) It applies to the hard­
ware and software system in a particular 
configuration, called the "system under 
test." Typically, a benchmark effort will 
consist of numerous "runs," with the bet­
ter runs being used as an indication of bet­
ter tuning. During an audit, several runs 
may be made and, assuming the auditor 
has no objection, only the best run will be 
reported. After the benchmark has been 
audited by an independent auditor, the re­
sults are written up in a report (called a 
Full Disclosure report). The intent of this 
report is to allow others to replicate the 
results. This document is submitted to the 
TPC for a 60-day compliance review, 
whereupon it is either rejected or ac­
cepted. In general, discussions held dur­
ing TPC meetings are secret; the rules of 
membership require that they be kept in 
confidence. Supposedly, this is to allow 
vendors to engage in "free discussion 
withoutfear of embarrassment." 

While one or two of the remarks in this 
article are specific to TPC Benchmark B, 
they generally apply to past, present, and 
future TPC benchmarks as well, and are 

• COMMENTARY• 
directed at the TPC. I believe that vendors 
will not be accused of"cheating," running 
"benchmark specials," and the like if the 
TPC does its job. This article is intended 
to pressure the TPC and its vendor mem­
bers into creating a benchmark commit­
tee we all can trust; one that does not need 
secrecy. 

• During an audit, 

several runs may be 

made, and, assuming 

the auditor has no 

oblectlon, only the 

best run wlll be 

reported. 

Roughly, my criticisms of the TPC and 
of TPC benchmarks fall into four cate­
gories, as follows: 

1. Benchmark Design Issues 
2. Interpretation of Results 
3. Compliance Issues 
4. Criticisms of the TPC 

I discuss specific criticisms in the follow­
ing sections. 

Benchmark Design Issues 
Statistics. Although there is good rea­
son to be understanding when criticizing 
the TPC, I find the TPC's failure to spec­
ify good experimental measurement prac­
tices unforgivable. During a TPC bench-· 
mark, the benchmark team collects and 
reports counts of transactions performed 
by the system under test on.fe it has set­
tled down into a "steady state" period and, 
among other things, computes a measure 
of concurrency. Any freshman college stu­
dent who takes a course in laboratory sci­

or estimate errors, how to calculate stan­
dard deviations and specify confidence 
factors, and how to describe measure­
ments so that they are repeatable. It 
seems that, with respect to reporting 
benchmark results, TPC members forgot 
all this (or never learned it). 

As a result, there is no specification of 
· the number of data points that must be 
taken (only the minimum number of in­
tervals is given), no characterization of the 
accuracy with which intervals are mea­
sured (yes, accuracy is relevant when 
making discrete measurements), no cal­
ibration procedure for the measurement 
subsystem, no measure of confidence in 
the results, no measure of variance, and 
so on. Were these characterizations to be 
included, they would provide some as­
surance that the benchrnatk results would 
be repeatable. 

Of far greater concern is the lack of 
any definition of what is meant by "steady 
state." For example, this could be given 
as the requirement that the system give 
the reported TPS (transaction per sec­
ond) value in the mean, with a variance 
of no more than two standard deviations. 
At the very least, and under the assump­
tion that systems cannot be required to 
reach any predefined steady state, the 
benchmark performer should provide a 
characterization of the variance during 
steady state measurements. Nothing of 
this sort is done. 

Similarly, it is possible to measure the 
time-dependence of variations in reported 
numbers. and to decompose that time-de­
pendence mathematically so as to deter­
mine if it is periodic or essentially random. 
These characterizations can help a user 
evaluate the stability of system perfor­
mance and help benchmark teams deter­
mine if there are important variables in 
the configuration that remain uncon­
trolled. The results of this method also 
serve as an indication of how predictable 

ence (for example, 
chemistry) learns 
how to characterize 

LISTING 2. TPC-8 Transaction Profile 
. 

·UGDI TIARSACTIOll 

LISTING 1. The TPC-8 database specification Update Account vhere·Account_ID - Aid; 

Read Account_Balance f roa Account 
HISTORY 

Account_ID, Teller_ID, Branch_ID, Delta, 

Tiae•t .. p, Filler_to_50_byte1 

ACCOUNT 

Set Account_Balance - Account_Balance + Delta 

Write Account_Balance to Account 

Write Aid, Tid, Bid, Del ta, Tiae_ata111p to History; 

Update Teller vhere Teller_ID - Tid; 

Account_ID. Branch_ID. Account_Balance. 

Filler_to_l OO_bytes 

Set Teller_Balance - Teller_Balance + Del ta 

Write Teller_Balance to Teller 

74 

TELL!R 

Teller_ID. Branch_ID. Teller_Balance, 

Filler_to_lOO_bytes 

BRANCH 

Branch_ID, .Branch_Balance, Filler.:..to_l OO_bytes 

Update Branch vhere Brancb,__ID - Tid; 

Set Brancb,__Balance - Branch_Balance + Delta 

Write Brancb,__Balance to Branch 

COll!!IT TRANSACTION 

Return Account_Balance to driver 

Note that statements can be in any language and in any 
order. 

NOVEMBER 1993 DBMS 



performance is likely to be, especially 
when a user's expected system configu­
ration differs from the benchmark con­
figuration. Again, the TPC reports do not 
contain such information. 

Unrealistic Configurations. In devel­
oping production applications, the r~ 
sources of the entire environment are nor­
mally considered. Thus, an IBM system 
may use CICS, and a DEC system may use 
ACMS. If these are deemed too expensive, 
an organization may use custom software 
to achieve the same effect The current in­
terpretation of the TPCB disallows such 
efforts. On the other hand, the particular 
configuration of the DBMS chosen for 
benchmark purposes may effectively dis­
allow backups or forward recovery proce­
dures as they would be required during 
normal operating conditions. Users need 
to be informed of any disallowed features 
that might have improved benchmark re­
sults, and, likewise, of the key potentially 
negative "side effects" the particular con­
figuration and tuning might have on a par­
ticular application. 

High Cost. Many factors contribute 
to the high cost of a TPC benchmark. 
Among these are the costs of software, 
hardware, the driver, lengthy debugging 
times, system tuning times, cost of tech­
nical personnel, auditor costs, and report 
production costs. Given these, it is not 
unusual to measure costs in the hundreds 
of thousands of dollars. One would hope 
that these costs would be much less if a 
user were simply replicating some pre­
viously run benchmark. Unfortunately, 
this is not the case because of the time 
required to redi5cover necessary bench­
marking information. (See the section ti­
tled "Inadequate Reporting" later in this 
article.) 

Furthermore, most of these OOsts are not 
reported. Thus, somewhat better bench­
mark results might be obtained only at a 
much higher relative cost for tuning and 
driver development How can users make 
comparisons if such costs (both time and 
expen~) are undocumented? 

In some cases, benchmark costs are ar­
guably artificially high. For example, the 
specification requires actually having on 
line, in the tested configuration, sufficient 
mass storage to operate for eight contin­
uous hours even though the actual mea­
surement interval need be only 15 minutes 
(clause 7.1). There is no obvious reason 
the amount of storage could not simply be 
computed rather than configured. Such 
costs do not make the benchmark acces­
sible and it is not clear that any potential 
value of having these requirements ex­
ceeds the costs they impose. 

Tuning Complexity. The average user 
simply does not have enough information 
to tune the system the way it is done by 
the typical benchmark team. Very often, 
privileged knowledge of the internals of 

DBMS NOVEMBER 1993 

• COMMENTARY• 
the DBMS, operating system, or hard­
ware are required. These facts are lmown 
to the product designers, and occasion­
ally, a few independent consultants. It is 
extremely unlikely that the reported re­
sults could be obtained from readily aw& 
able information about the DBMS and op­
erating system alone. The average user 
does not have the requisite experience in 
performance tuning; even after ten years 
of consulting, I find each such effort to be 

• The average user 

usually cloes not 

have the prlvllege of 

working with such 

severely Isolated 

systems. 

an intense learning experience. All infor­
mation used in a benchmark should be 
available publicly so that users can bene­
fit from such knowledge. Essentially, a 
"lab notebook" that describes the tuning 
process is needed. It is surprising that 
vendors do not see the advantage of of­
fering such information to their cus­
tomers, especially when they seem so ea­
ger to offer (perhaps unintentionally) 
misleading benchmark results. 

In addition, these benchmarks are gen­
erally run with the system isolated from 
nonbenchmark activity. The average user 
usually does not have the privilege of 
working with such severely isolated sys­
tems. The typical application transaction 
mix, in conjunction with the significantly 
more complex databases that are used in 
practice as compared to benchmark data­
bases, are sufficient to make a benchmark 
run in isolation all but worthless to users. 
Users need some method to measure how 
lack of system isolation will affect bench­
mark results; the TPC should not assume 
i!>olation is possible. The exact system 
configuration used in a benchmark is 
highly unlikely to be used in practice. It 
thus becomes extremely important that 
users are helped to assess the robustness 
of a product and the meaningfulness of 
benchmark results. 

Interpretation of Results 
Lack of Comparability. The numbers 
produced by different runs of a bench­
mark are not comparable, let alone with 
those produced by different benchmarks. 
There are two reasons for this: Frrst, the 
numbers reported in a Full Disclosure re­
port are not properly characterized as em­
pirical measurements, and second, the 
specification and configuration are very 
loosely defined. They simply do not mea­
sure the same thing quantitatively and 

probably do not even measure the same 
thing qualitatively. A benchmark using 
a database is fundamentally different 
from a hardware benchmark; it is inher­
ently more complex. Suggesting the con­
trary by comparing benchmark numbers, 
even implicitly, is naive. I certainly would 
not go so far as to say that two sets of 
TPC numbers can even indicate relative 
performance, even if they are qualified 
by a trademarked phrase like "Bench­
mark B TPS." 

No Measure of Product Capabili­
ties. Unless all of a product's features can 
be used in testing perfonnance, it does not 
make sense to treat the TPc numbers as 
a measure of a product. The features and 
techniques that account for perfonnance 
differ greatly between products, a fact of 
which everyone who has tuned the per­
formance of multiple DBMS products is 
aware. The factors that must be taken into 
account for tuning are often subtle. 

As noted in the next section (see "Com­
pliance Issues"), the product features;~ 
plication techniques, or system coofigu­
rati ons that would make a significant 
difference in performance or concurrency 
levels can be disallowed arbitrarily by the 
auditor or the TPC reviewers in a TPC 
benchmark. For example, both database 
triggers and the use of row identifiers 
have been d:.sailowed without (m my opin­
ion) reasonable justification and certainly 
without any publicly available written ex­
planation by the TPC. 

In order to measure a wen.defined char­
acteristic of a system, it can be desirable 
to force a particular method of imple­
mentation. In such circumstances, one at­
tempts to define a test that eliminates un­
related and unknown parameters (noise), 
or reduces their impact on the measure­
ment Unfortunately, the TPC specifica­
tions are so loose that none of the mea­
sured characteristics can be said to be 
well-defined. 

Inadequate Reporting. For reported 
results to be reproducible, users need to 
know what was done during the bench­
mark and how. They need to know which 
portions of the configuration are sensitive 
and which are robust The TPC Full Di& 
closure reports typically do not record 
such information, nor can users infer it 
from the information that is recorded. 
Even worse, reported database code (for 
example, SQL) is sometimes syntactically 
incorrect and program code (such as the 
code used iri the database loader program 
or the driver) will not even compile. When 
asked for this information, some vendors 
(benchmark sponsors) have.refused, call­
ing it "proprietary." 

Any independent party should be able 
to repeat a published benchmark and 
comprehend why particular tuning deci­
sions were made. The preferable solution 
is for the TPC to offer the required pub-

75 



lications. Alternatively, sponsors should 
document and offer the necessary infor­
mation. Neither solution is available to­
day. Indeed, it is doubtful that the bench­
mark teams know and could reproduce 
the results in a second independent 
benchmark if some time were allowed to 
elapse - even given access to their own 
notes! 

The report provided by the TPC -
which is devoid of (1) the reasons for im­
plementing the benchmark in a particular 
manner and (2) an analysis of functional 
trade-offs among the possible implemen­
tations - is not sufficient A comprehen­
sive analysis of the results, listing the 
trade-offs for each tuning, pricing, and con­
figuration decision is needed. Benchmark 
reports should contribute to the body of 
available knowledge about how a product 
works and how best to use it If they do not, 
they are de facto imprecise and unscien­
tific. A complete report need not greatly in­
crease the cost of running a benchmark. 
Much of the needed information should 
be relatively constant and need only be pro­
duced once. The remainder could be pro­
duced semiautomatically, requiring a mod­
icum of manual attention. 

Compliance l11•es 
Auditor Comprehension. The auditor 
plays an important role in the 1PC, much 
like a financial auditor does with respect 
to a col']>Oration. Unlike a financial audi­
tor, 1PC auditors must establish their own 
procedures for verifying compliance. This 
situation arises in part because of the lack 
of specificity of the benchmark, and in 
part because of the wide variety of sys­
tems the auditor is likely to audit But it 
is certain that no auditor is likely to com-

- prehend all the myriad intricacies of ev­
ery operating system, DBMS, program­
ming language, and custom driver design 
combination encountered. 

Given so many variables, how can the 
auditor be expected to develop a compli­
ance test suite that is unbiased and with­
out serious loopholes? While I have great 
respect for some TPC auditors, I would 
not expect such superhuman feats from 
anyone. Furthermore, without uniform 
guidelines, why should one auditor's com­
pliance test suite be as stringent as an­
other's? The TPC should clearly specify 
audit procedures and approve and docu­
ment exceptions to these procedures 
where they are judged necessary. In prin­
ciple, it should be possible to fully auto­
mate a good audit procedure. 

Auditor Discretion. Because of the 
lack of a tight specification and the lack of 
a uniform set of compliance tests, the au­
ditor often must to make judgment calls. 
In fact, the auditor can simply allow or dis­
allow the use of a product feature, a test 
configuration, or a particular test run, vir­
tually on a whim. Unless the test sponsor 

76 

•COMMENTARY• 
is willing to engage a different auditor (per­
haps after having already expended con­
siderable resources with the current au­
ditor), the decision - in practice - is 
final It is unconscionable that benchmark 
auditors and sponsors are placed in this 
position. 1his will-o'-the-wisp character of 
audited TPC benchmarks is alone suffi­
cient to make them useless. Certainly, the 
need for ad hoc and undocumented judge­
m~nt calls by a human auditor should be 
minimized. Auditing may become a little 
better in the near future; TPC auditors 
could become licensed and paid by the 
1PC (rather than by test sponsors) in Oc­
tober 1993 if a pending proposal passes. 
(Given the record of the TPC on previous 
proposals to make improvements, I won't 
hold my breath.) 

Serializability. Transaction isolation 
requirements are important for ensuring 
that benchmark results do not take ad­
vantage of either the particular transac­
tion profile, or of the fact that the test is 
run with the system isolated. Clause 2.4.1 
of the TPC-B specification states these as 
follows: 

"OperationsofconCUJl"enttransactions 
must yield results which are indistin­
guishable from the results which would 
be obtained by forcing P.ach transaction 
to be serially executed in some order. 

This property is commonly called seri­
alizability. Sufficient conditions must be 
enabled at either the system or application 
level to ensure serializability of transac­
tions under any mix of arbitrary transac­
tions, not just 1PC Benchmark B transac­
tions. The system or application must have 
full serializability enabled, i.e., repeated 
reads of the same records within any com­
mitted transactions must have returned 
identical data when run concurrently with 
any mix of arbitrary transactions." 

The specification then goes on to pro­
vide isolation tests, given that the DBMS 
uses conventional locking schemes (clause 
2.4.2). These tests are flawed.in two re­
spects. FITSt, any number of TPC Bench­
mark B (or A) transactions are intrinsically 
serializable. It is only when "any mix of ar­
bitrary transactions" is run concurrently 
with the TPC Benchmark B transaction 
that the question of serializability has any 
meaning. Second, the 1PC Benchmark B 
specification gives no specific requirements 
for systems that implement nonstandard 
locking, and isolation schemes. It simply 
requires the test sponsor to disclose those 
locking and isolation techniques and the 
test used to confirm serializability. 

Under a generous interpretation, this 
would require that nonstandard locking 
schemes be fully disclosed by the spon­
sor (even those that are "proprietaryj. In 
addition, the TPC would have to place sig­
nificant emphasis on acceptance or re-

jection of the tests invented by the spon­
sor to confirm serializability, and would 
have to publicly report its justification of 
acceptance. Only in this way could users 
and technical analysts meaningfully in­
terpret the benchmark results. Unfortu­
nately, neither of these conditions has 
been met to date. 

To my way of thinking, any benchmark 
that is run with the DBMS enforcing any­
thing less than full serializability is in vio­
lation of these clauses under any reason­
able reading. Many published benchmarks 
are run without ensuring serializability; it 
is easy to define a "mix of arbitrary trans­
actions" that will violate serializability 
given the configuration tested. These 
benchmarks should be withdrawn volun­
tarily or the TPC Compliance Review Com­
mittee should throw them out 

As one subterfuge, the benchmark 
team or auditor may interpret the phrase 
"sufficient conditions must be enabled at 
either the system or application level" to 
mean that applications involving non-TPC 
transactions could be written so as to en­
sure they are isolated from the TPC trans­
actions. But surely this is a violation of the 
intent of the clause; this phrase clearly 
refers to the benchmark system and 
benchmark application level and not to 
some other application·level. Even more 
important, numbers reported from these 
benchmarks completely ignore the im­
pact that such applications would have on 
concurrency. 

Enforcing this clause could have a se­
rious negative impact on reported TPC 
numbers. If serializability is enforced at 
the system level, some row-level concur­
rency schemes will be disabled, so that 
concurrent updates are prevented at the 
table level In loosely coupled cluster con­
figurations, system-level serializability en­
forcement can also have a detrimental im­
pact on cache management schemes. The 
only other alternative requires program­
mer and· ad hoc user intPrvention. Each 
transaction in the enVironment must en­
force stringent isolation by using, for ex­
ample, a combination of explicit table lock­
ing and special SEI.ECTs that lock accessed 
data for the duration of the transaction 
(such as, SEIBCT FOR UPDA'IB). Obviously, 
table locking prevents concurrent updates 
at the table level The required special SE­
IBCT statements often cannot be used with 
a wide variety of important SELECT con­
structs, such as DISilNCT, GROUP BY, UNION, 
INTERSECT, COUNT, MAX, MIN, SUM, or AVG. 
These restrictions effectively disable con­
currency for all but very special mixes of 
transactions. · , 

Suppose that, for a DBMS with an af­
fected row-level concurrency scheme, a 
transaction is needed that conditionally uir 
dates a single row in one of the TPC-B ta­
bles based on the sum of a column's val­
ues from a small subset of the rows in that 

NOVEMBER 1993 DBMS 



table. Ensuring serializability of such a 
transaction mix would require locking the 
entire table for update (because SELECT 
FOR UPDAIB could not be used). While that 
transaction ran, no concurrent TPC-B 
transactions could complete! This is siin­
ply a fact of life for all DBMSs. Unless there 
is a weakness in the concurrency control 
scheme, system-level serializability en­
forcement should not iinpact benchmark 
results except for the additional overhead 
associated with enforcing seriali2.ability. It 
would, however, put all DBMSs on a par 
with respect to the cost of maintaining data­
base integrity. 

Even if you accept the proposition that 
SEIECT FOR UPDAn: is a permissible method 
of ensuring serializability, this technique 
places a great burden on the individual 
user. To assume that no user would make 
an error and forget to qualify each SELECT 
with a FOR UPDAIB clause ignores the pur­
pose of system-enforced serializability. It 
throws away more than a decade of re­
search into, and iinplementation of, auto­
matic concurrency-control technology. 

Similarly, I cannot accept the point of 
view that regards the specification of tests 
of serializability as too difficult A concur­
rency-control scheme can be proved to be 
either capable or incapable of serializabil­
ity enforcement In fact. it is ~1e only iso­
lation level that can be defined objectiVely 
(that is, so that poss1.1>le anomalies are not 
system<iependent) and which, therefore, 
can be used as a condition for comparison 
of concurrency levels. It should be in­
cumbent upon the vendor of the bench­
marked system to provide such proof, and 
to show that the conditions for its validity 
are satisfied by the benchmark configu­
ration. 

Likewise, I do not find it reasonable 
that the TPC publishes a specification that 
iinplies TPC benchmarks enforce seri.al­
izability while at the same time "inter­
preting" the clause into nonexistence be­
hind closed doors. The TPC continually 
chooses a course of action that maintains 
appearances when faced with an oppor­
tunity to clarify and inform. This was done 
for TPC-A, TPC-B, and TPC-C, but the 
TPC chooses not to document its inter­
pretation. Users cannot be expected to 
know that the publication contains word­
ing that means one thing to TPC mem­
bers anq something else to everyone else 
in the world, or to judge the impact of 
such informal and unwritten interpreta­
tions. At the very least, the specification 
should remove any use of the term "seri­
alizability" because it uses the term im­
properly. 

Criticisms of the TPC 
Politics. The TPC has, on occasion, rein­
terpreted a benchmark specification after 
a benchmark was run. Faced with a Full 
Disclosure report, the members of the 

78 

• COMMENTARY• 
council have decided to disallow the re­
sults, not on the basis of some specifically 
violated rule, but based on subsequent in­
terpretation of the intent of a rule. This 
would not be so bad if it were a serious at­
tempt to produce a tight specification; 
then the specification could be modified 
and a new version produced with all sub­
sequent benchmarks being required to 
comply with it Considering the fact that 
the TPC consists of DBMS vendors, their 
efforts are more likely to be directed at 
iinproving their market position. 

For example, a vendor's competitors 
will lobby (I use this particular political 
term advisedly) other council members to 
vote against the benchmark certification. 
When a TPC benchmark specification is 
reinterpreted or "clarified" after the fact, 
a new version of the benchmark specifi­
cation is released. Such a new version is 
likely to eliminate some particular vendor's 
results. In fact, I have come to the con­
clusion that much of the wording in the 
benchmark specifications is written from 
the beginning with such intent, and that 
certain omissions exist as loopholes to 
serve some of the more powerful vendors. 

Regardless of the degree to which such 
political maneuvering does or does not 
occur, a review committee made up of a 
vendor's competitors is clearly not in the 
best interest of the public. At the very 
least, the omissions in the specification 
discussed in this article are hard to justify 
as being in the best interest of the DBMS 
purchaser. Essentially, the TPC is noth­
ing more than a tool of vendor marketing. 
It gives DBMS vendors who wish to en­
gage in exaggerations and unethical com­
petitive marketing tactics a pseudosci­
entific facade to hide behind. The TPC 
measurements of "transactions per sec­
ond" amount to little more than market­
ing numerology. One sometimes wonders 
whether the numbers that a vendor pub­
lishes came first from marketing or from 
a benchinark effort 

Conclusions and 
Recommendations 
The TPC needs to spend some additional 
effort in addressing the problems dis­
cussed above. There is no reason that 
benchmark design should not follow good 
statistical practices, that a benchmark 
should not be repeatable and uniformly 
interpreted, or that benchmark results 
should not be meaningful and useful to 
the public. The TPC should make every 
effort to fully disclose both the details and 
an analysis of a benchmark. 

Users deserve to know the reasoning 
behind acceptance of a benchmark; how it 
comes to pass compliance, any criticisms 
leveled against the benchmark, and how 
they were answered. After all, it is the user 
who will spend company funds, who will 
put company data at risk, and who will 

gamble that TPC numbers are meaningful 
measures of performance when selecting 
and purchasing a DBMS. TPC members 
(that is, the vendors) have little to lose if 
the intent of the benchmark is, in fact, any­
thing more than a marketing scam. 

In my experience, the influence ofTPC 
benchmark numbers is subtle; individu­
als without knowledge of the TPC see nu­
meric comparisons in sales and market­
ing literature, conclude subconsciously 
that the product with the larger number 
is a better performer, and then remember 
only that unsubstantiated "fact" when it 
can have an iinpact on the purchase deci­
sion. DBMS vendors are particularly guilty 
of fostering the idea that TPC numbers 
measure DBMS performance, an idea that 
TPC management acknowledges is ar­
guable. Vendors argue that potential pur­
chasers demand TPC numbers and that 
there is no better measurement of DBMS 
performance. 

I argue that vendors cannot transfer 
their responsibilities to users. Frrst, ven­
dors market with TPC numbers - liter­
ally defining better performance as higher 
'IPC numbers in advertisements and mar­
keting literature. Second, vendors should 
tell users that TPC benchmarks don't do 
the job, rather than protest that there is 
nothing better. Third, it is vendors who 
have failed to define better benchmarks. 
There is one word for insisting on giving 
customers honest, accurate product in­
formation, and for designing products that 
protect the customer from failure: in­
tegrity. Maintaining integrity requires con­
stant vigilance, but in the end, either you 
have it or you don't 

The recent scandal between Oracle 
Corp. and the Standish Group regarding 
benchmarks is shameful It is a mark of a 
baclly managed standards body when rais­
ing concerns (such as those raised by the 
Standish Group about Oracle's TPC-A 
benchmark) can result in a member ex­
pressing a rebuttal via a lawsuit (such as 
the lawsuit Oracle brought against the 
Standish Group for the latter's criticisms). 

While it may prompt the TPC to erui.ct 
policy regarding "benchmark specials," 
it has really served only to reemphasize 
the importance of a policy I have prac­
ticed for several years. Until the TPC de­
cides that it is more iinportant to act as a 
provider of useful information than as a 
broker of marketing and advertising 
"data," and until it stops hiding behind a 
policy of secrecy, I must recommend that 
my clients ignore all TPC benchmark re­
sults and inform their colleagues to do 
likewise. I further recommend that they 
openly and vehemently protest the use of 
these numbers by vendors, whether in 
sales presentations, published articles, or 
public forums. Unfortunately, govern­
ment agencies may soon require TPC 
benchmarks. What a pity. • 

NOVEMBER 1993 DBMS 



•BENCHMARK ANALYSIS• 

DAVID MCGOVERAN 

HAS DESIGNED A 

NEW DATABASE 

CONNECTIVITY 

B•NCHMARK (DCB) 

TO IDENTIFY AN~ 

MEASURE MIDDLE-

WARE CAPABILITIES 

AND WEAKNESSES. 

82 

BY RICHARD FINKELSTEIN 

T 
he advent of client/seIVer 
computing has created a 
new class of software that 
sits between the client ap­
plication and the target 
database server. nus soft­

ware. which enables connectivity between 
a variety of tools and database servers, is 
sometimes referred to as middleware. Eval­
uating database middleware has been, for . 
the most part, an ambiguous undertaking 
loaded with risks and uncertainties. Often, 
products are selected that do not perform 
well or cannot perform necessary tasks. 
There are too many dissatisfied customers 
and failed projects because of middleware 
software that did not live up to customer 
expectations. In order to address this sit­
uation, David McGoveran of Alternative 
Technologies has designed and built a new 
Database Connectivity Benchmark (DCB) 
that seeks to identify and measure mid­
dleware capabilities and weaknesses. (For 
commentary on the 1PC benchmarks, see 
David McGoveran's article, "Useless 
Benchmarks: Just Say No!" on page 72.) 

Middleware is every bit as complex as, 
and probably more complex than, the 
seIVers and front~nd tools that it is con­
necting. The complexity arises from the 
fact that middleware has to mediate the 
differences between two or more hetero­
geneous software products (front-end tools 
and back~nd SQL database servers, for 
example) over a variety of communication 
protocols and mediums. The connection 
has to be reliable and fast, and must sup­
port the functionality that is represented 
in the client and seIVer software. 

The ideal situation would be for the 
client and seIVer products to interoperate 
seamlessly with minimal impact from the 
connectivity software. Currently, most 

miqdleware products fall considerably 
short of this ideal. With the DCB bench­
mark, it is possible to quantify the differ­
ence between the ideal and reality. 

The Database 
Connectivity Benchmark 
McGoveran designed the DCB specifi· 
cally to measure the capabilities of data­
base connectivity products. For this rea­
son, the DCB tests attempt to isolate the 
performance characteristics of the DBMS 
so that they do not impact the benchmark 
results. Unlike standard database bench­
marks, for example; DCB databases are 
defined so that the tables are small and 
can be cached in memory. nus minimizes 
1/0 operations and eliminates this vari­
able during the testing process. 

There are two types of tests with the 
DCB. The first type tests functional limi­
tations and the second tests reliability and 
performance. Within the first type of tests, 
DCB tries to determine maximum load 
characteristics that are often overlooked, 
even in well-designed DBMS bench­
marks. These characteristics include: 

• maximum concurrent transactions 
• maximum number of accessible data· 
bases and tables 
• login/logoff rates 
• maximum client connections 
• capability to recover from DBMS errors 
and failures, and connection errors 
• maximum number of bytes, columns, 
and rows that can be transmitted · 

Richard Finkelstein is president of Per­
formance Computing Inc., a database­
technology consulting company based in 
Chicago. 

NOVEMBER 1993 DBMS 



•BENCHMARK ANALYSIS• 
• capability to abort in-process transactions 
• data-type support 
• maximum number of servers that can 
be supported across multiple nodes 
• capability to support SQL Data Defini­
tion and Data Control language statements 

Ideally, middleware products should be 
able to support loads that are far greater 
than the loads you expect to put on the sys­
tem. Middleware vendors should be able 
to provide supporting evidence that their 
products can support the necessary loads 
in real-life situations (by running the DCB 
or by providing references). This set of tests 
provides an excellent feature checklist for 
understanding and evaluating middleware 
and DBMS software, even if benchmark 
tests are not run. Understanding the ratio­
nale for the individual DCB functional tests 
can go a long way toward avoiding disair 
pointments in middleware purchases. 

The second type of test attempts to mea­
Stll'e performance and reliability when pro­
cessing a variety of worldoads, including: 

• batch processing 
• report generation 
• onlioe transaction pr0cessing (OLTP) 
• decision support 
• ad hoc query 
• online complex processing (OLCP) 
• mixed transaction loads 

The set of workloads is very compre­
hensive. The goal is to test the middleware 
product under common transaction-pro­
cessiog conditions- something that other 
database benchmarks don't often do. The 
mixed transaction load is designed specif 
ically to measure the interference between 
individual workloads (such as batch re­
porting on OLTP). The DCB documenta­
tion, however, warns (correctly, in my opin­
ion) that benchmark results are highly 
. dependent on workload, application re­
quirements, system design, and imple­
mentation, and that the DCB should not 
be used as a substitute for critical capacity 
planning. 

The DCB is unique among database 
benchmarks in the amount of attention it 
places on data consistency. Most bench­
marks either disregard this issue or leave 
it up to the vendor running the benchmark 
to choose the level of consistency. Often, 
transaction benchmarks are run with very 
low levels of consistency (or none at all) in 
order to achieve high transaction rates. The 
DCB mandates performing certain trans­
actions at the highest level of consistency, 
called "serializ.ability." Serializ.ability guar­
antees that transactions run simultaneously 
against the same database will yield correct 
results no matter how they are interleaved. 

Running the Benchmark 
Alternative Technologies packages the 
DCB with several programs that help au-

84 

tomate benchmark testing. A database load 
program is included to assist in populating 
the database. The database consists of 13 
tables that represent a typical order~ntry 
system. The system creates special tables 
in order to simulate both tables with many 
columns and tables with wide rows (com­
plex data). The DCB states explicitly that 
the server must be configured with enough 
memory to permit caching (10 memory) of 
the entire DCB database. Titls is done to 
eliminate the effect of disk 1/0 on perfor­
mance measurements. 

. Alternative Technologies licenses a 
Driver System, which submits transaction 
workloads and records response times, 
free of charge to DCB testers. The Driver 
System has a standard portion that deter­
mines which transactions will be submit­
ted to the DBMS, and an application code 
portion customized for specific database 
products. The test sponsor must develop 
and compile the custom interlace. Alter­
native Technologies provides sample code 
to help develop the necessary interface. 
The driver portion reads instructions from 
a script file that the testing group can cus­
tomize in order to test special conditions. 

DCB's fuily automated approach has seY­

eral advantages over other benchmarks: 

• The benchmark is easier to run because 
Alternative Technologies provides the 
load and driver systems. 
• It is flexible and extensible. You can 
rustomize the Driver System scripting lan­
guage to perform work that is not in­
cluded or does not pertain to the system 
under test 
• Results are comparable because each 
benchmark must use the Driver System 
and the associated scripts. 

Reporting Benchmark Re1alt1 
The sponsor of the benchmark must issue 
a Full Disclosure report, which must con­
tain an auditor's attestation letter. The re­
port contains the performance results, in­
cluding maximum and average response 
times as well as 90th percentile results 
(meaning 90 percent of the transactions 
achieved this response time). The report 
also includes the number of transactions 
per second for each workload. The mixed 
transaction workload, which meaSW"eS how 
much work can be done in a given interval. 
is reported as the total number of transac­
tions (a mixture of many types of transac­
tions) completed during the measurement 
interval, divided by the number of seconds 
in the interval. 

In order tO get a good idea of the range 
and distribution ofresponse times across 
all types of transactions, the DCB report 
contains frequency distribution graphs 
that plot response time and transactions 
per second for various levels of through­
put Titls information is important for un­
derstanding the effect that higher trans-

action rates have on response time. The 
report also contains comprehensive sta­
tistical information (such as transaction­
rate standard deviation and variance) in 
order to evaluate system stability. 

The report includes a description of any 
special settings used to run the test and 
measurements of system utilization, in­
cluding memory used, disk 1/0 activity, 
and CPU usage. Of special note is the re­
quirement that the test sponsor report the 
number of times the driver had been used 
prior to running the benchmark. The in­
tent is to prevent repeated attempts to run 
a test and report only the ones that suc­
ceed. The test sponsor must also provide 
a detailed list of hardware and software 
and report a :five-year pricing of the entire 
test configuration. 

Co•clu1ion1 
DCB sets a new high watermark for data­
base benchmarking. The DCB is an ex­
haustive effort to close loopholes that have 
plagued other industry benchmarks. Un­
like the TPC benchmarks (IPCA,-B, and 
-C), which were designed essentially by 
RDBMS vendors and are highly biased 
toward showing the product in the best 
light (by reporting absurdly high transac­
tion rates), the DCB intends to objectively 
uncover problems and issues in he con­
nectivity products it tests. In other words, 
Alternative Technologies designed it to 
protect the customer by providing useable 
infonnation. 

The most important aspect of the DCB 
is that it does not report simple metrics 
such as transactions per second or dollars 
per second. These figures often have no 
meaning and are easily contrived by ven­
dors. DCB analyzes maximum load capa­
bilities, reports on problems that arise in 
benchmarks, ensures that high levels of 
data integrity are supported, and provides 
detailed performance metrics so that prod­
uct profiles can be better understood. 

In fact, the benchmark is so compre­
hensive and restrictive, that it may end up 
that no vendor will run DCB because it may 
reveal major product weaknesses. This 
means that it may be up to customers to 
run DCB themselves. However, if enough 
customers insist that vendors run the DCB, 
the DCB may become an industry stan­
dard. The DCB specification document it­
self is an invaluable reference for under­
standing potential bottlenecks and failure 
points in database and database connec­
tivity products. I highly recommend it to 
anyone who is in the process of evaluating 
middleware or RDBMS software. The DCB 
will be available to interested parties, in De­
cember 1993. There are no fees for using 
the DCB other than the cost of copying, 
mailing, and handling. • 
•Alternative Tedmologies, 13150 Highway 9, Ste. 123, 
Boulder Creek. CA 95006; 408·338-4621 or fax 408-
338·3113. 

NOVEMBER 1993 DBMS 


